
Reference Cards
for MongoDB

What is MongoDB?
MongoDB is an open-source, general
purpose database.

Instead of storing data in rows and columns as a relational

database does, MongoDB uses a document data model,

and stores a binary form of JSON documents called BSON.

Documents contain one or more fields, and each field contains

a value of a specific data type, including arrays and binary data.

Documents are stored in collections, and collections are stored

in databases. It may be helpful to think of documents as roughly

equivalent to rows in a relational database; fields as equivalent

to columns; and collections as tables. There are no fixed

schemas in MongoDB, so documents can vary in structure and

can be adapted dynamically.

MongoDB provides full index support, including secondary,

compound, and geospatial indexes. MongoDB also features a

rich query language, atomic update modifiers, text search, the

Aggregation Framework for analytics similar to SQL GROUP

BY operations, and MapReduce for complex in-place data

analysis.

Built-in replication with automated failover provides high

availability. Auto-sharding enables horizontal scaling for large

deployments. MongoDB also provides native, idiomatic drivers

for all popular programming languages and frameworks to

make development natural.

Queries

Queries

{a: 10} Docs where a is 10, or an array containing
the value 10.

{a: 10, b: “hello”} Docs where a is 10 and b is “hello”.

{a: {$gt: 10}}
Docs where a is greater than 10. Also
available: $lt (<), $gte (>=), $lte
(<=), and $ne (!=).

{a: {$in: [10, “hello”]}} Docs where a is either 10 or “hello”.

{a: {$all: [10, “hello”]}} Docs where a is an array containing both
10 and “hello”.

{"a.b": 10} Docs where a is an embedded document
with b equal to 10.

{a: {$elemMatch: {b: 1, c: 2}}}
Docs where a is an array that contains an
element with both b equal to 1 and c equal
to 2.

{$or: [{a: 1}, {b: 2}]} Docs where a is 1 or b is 2.

{a: /^m/}
Docs where a begins with the letter m.
One can also use the regex operator: {a:
{$regex: “^m”}}.

{a: {$mod: [10, 1]}} Docs where a mod 10 is 1.

{a: {$type: 2}} Docs where a is a string. See bsonspec.org
for more.

{ $text: { $search: “hello” } } Docs that contain ”hello” on a text
search. Requires a text index.

Queries and What They Match

For More Information

http://docs.mongodb.org/manual/tutorial/query-documents/

http://docs.mongodb.org/manual/reference/operator/query/

Not Indexable Queries

The following queries cannot use indexes. These query forms should normally be
accompanied by at least one other query term which does use an index.

Queries and What They Match (continued)

{a: {$nin: [10, “hello”]}} Docs where a is anything but 10 or
“hello”.

{a: {$size: 3}} Docs where a is an array with exactly 3
elements.

{a: {$exists: true}} Docs containing an a field.

{a: /foo.*bar/} Docs where a matches the regular
expression foo.*bar.

{a: {$not: {$type: 2}}} Docs where a is not a string. $not
negates any of the other query operators.

{a: {$near:
 {$geometry:{
 type: “Point”,
 coordinates: [-73.98,
40.75]
 }}
} }

Docs sorted in order of nearest to farthest
from the given coordinates. For geospatial
queries one can also use $geoWithin
and $geoIntersects operators.

Queries

Updates

Updates

{$inc: {a: 2}} Increments a by 2.

{$set: {a: 5}} Sets a to the value 5.

{$unset: {a: 1}} Removes the a field from the document.

{$max: { a: 10 } } Sets a to the greater value, either current
or 10. If a does not exist sets a to 10.

{$min: {a: -10}} Sets a to the lower value, either current or
-10. If a does not exist sets a to -10.

{$mul: { a: 2 } } Sets a to the product of the current value
of a and 2. If a does not exist sets a to 0.

{$rename: { a: “b”} } Renames field a to b.

{ $setOnInsert: { a: 1 } },
{ upsert: true } Sets field a to 1 in case of upsert

operation.

{$currentDate: { a: { $type:
“date”} } }

Sets field a with the current date.
$currentDate can be specified as date
or timestamp. Note that as of 3.0, date and
timestamp are not equivalent for sort order.

{ $bit: { a: { and: 7 } } }

Performs the bitwise and operation over a
field. If a is 12:

1100
0111

0100

Supports and|xor|or bitwise operators.

Field Update Modifiers

For More Information

http://docs.mongodb.org/manual/reference/operator/update/

Array Update Operators

{$push: {a: 1}} Appends the value 1 to the array a.

{$push: {a: {$each: [1, 2]}}} Appends both 1 and 2 to the array a.

{$addToSet: {a: 1}} Appends the value 1 to the array a (if the
value doesn’t already exist).

{$addToSet: {a: {$each: [1,
2]}}}

Appends both 1 and 2 to the array a (if
they don’t already exist).

{$pop: {a: 1}} Removes the last element from the array a.

{$pop: {a: -1}} Removes the first element from the array a.

{$pull: {a: 5}} Removes all occurrences of 5 from the
array a.

{$pullAll: {a: [5, 6]}} Removes multiple occurrences of 5 or 6
from the array a.

Updates

Aggregation
Framework

Aggregation Framework Stages

The aggregation pipeline is a framework for data aggregation modeled on the
concept of data processing pipelines. Documents enter a multi-stage pipeline that
transforms the documents into aggregated results. Pipeline stages appear in an array.
Documents pass through the stages in sequence. Structure an aggregation pipeline
using the following syntax:

db.collection.aggregate([{ <stage> }, ...])

Aggregation Framework

{$match: { a: 10 }} Passes only documents
where a is 10.

Similar to find()

{$project: { a: 1,
_id:0}}

Reshapes each document
to include only field a,
removing others.

Similar to find()
projection

{$project: { new_a:
"$a" }}

Reshapes each document
to include only _id and the
new field new_a with the
value of a.

{a:1} =>
{new_a:1}

{$project: { a: {$ad-
d:[“$a”, “$b”]}}}

Reshapes each document to
include only _id and field
a, set to the sum of a and b.

{a:1, b:10} =>
{a: 11}

{$project: { stats:
 {
 value: “$a”,
 fraction: {$di-
vide: [“$a”, “$b”]}
 }
} }

Reshapes each document
to contain only _id and
the new field stats which
contains embedded fields
value, set to the value of a,
and fraction, set to the
value of a divided by b.

{a: 10, b:2} =>
{ stats:{ value:
10, fraction:
5} }

{$group: {
 _id: “$a”,
 count:{$sum:1}
} }

Groups documents by field
a and computes the count
of each distinct a value.

{a:”hello”},
{a:”goodbye”},
{a:”hello”} =>
{_id:”hello”,
count:2}, {_
id:”goodbye”,
count:1}

For More Information

http://docs.mongodb.org/master/core/aggregation-introduction/

Aggregation Framework Stages (continued)

{$group: { _id: “$a”,
names: {$addToSet:
“$b”}} }

Groups documents by field
a with new field names
consisting of a set of b
values.

{a:1, b:”John”},
{a:1, b:”Mary”}
=> {_id:1,
names:[“John”,
“Mary”] }

{$unwind: “$a”}
Deconstructs array field a
into individual documents of
each element.

{a: [2,3,4]} =>
{a:2}, {a:3},
{a:4}

{$limit: 10}
Limits the set of documents
to 10, passing the first 10
documents.

{$sort: {a:1}} Sorts results by field a
ascending.

{$skip: 10}
Skips the first 10
documents and passes the
rest.

{$out: “myResults”}
Writes resulting documents
of the pipeline into the
collection “myResults”.

Must be the last stage
of the pipeline.

Aggregation Framework

Indexing

Index Creation Syntax

db.coll.createIndex(<key_pattern>, <options>)

Creates an index on collection coll with given key pattern and options.

Indexing

{a:1} Simple index on field a.

{a:1, b:-1} Compound index with a ascending and b descending.

{“a.b”: 1} Ascending index on embedded field “a.b”.

{a: “text”} Text index on field a. A collection can have at most one
text index.

{a: “2dsphere”} Geospatial index where the a field stores GeoJSON
data. See documentation for valid GeoJSON formatting.

{a: “hashed”} Hashed index on field a. Generally used with hash-
based sharding.

Indexing Key Patterns

{unique: true} Creates an index that requires all values of the
indexed field to be unique.

{background: true}
Creates this index in the background; useful when
you need to minimize index creation performance
impact.

{name: “foo”}
Specifies a custom name for this index. If not
specified, the name will be derived from the key
pattern.

{sparse: true} Creates entries in the index only for documents
having the index key.

{expireAfterSeconds:360}

Creates a time to live (TTL) index on the index key.
This will force the system to drop the document after
3600 seconds expire. Only works on keys of date
type.

{default_language:
‘portuguese’}

Used with text indexes to define the default language
used for stop words and stemming.

db.products.createIndex(
{‘supplier’:1}, {unique:true})

Creates ascending index on supplier
assuring unique values.

db.products.createIndex(
{‘description’: ‘text’},
{‘default_language’:
‘spanish’})

Creates text index on description key
using Spanish for stemming.

db.products.createIndex({
‘regions’: 1 }, {sparse:true})

Creates ascending sparse index on
regions key. If regions is an array –
e.g., regions: [‘EMEA’, ‘NA’,
‘LATAM’] – will create a multikey index.

db.stores.createIndex(
{location: “2dsphere”}) Creates a 2dsphere geospatial index on

location key.

Index options

Examples

Indexing

For More Information

http://docs.mongodb.org/master/core/indexes-introduction/

db.products.getIndexes() Gets a list of all indexes on the products
collection.

db.products.reIndex() Rebuilds all indexes on this collection.

db.products.dropIndex({x: 1, y:
-1})

Drops the index with key pattern {x:
1, y: -1}. Use db.products.
dropIndex(‘index_a’) to drop index
named index_a. Use db.products.
dropIndexes() to drop all indexes on
the products collection.

Administration

Indexing

Replication

Replication

What is a Majority?

If your set consists of...
1 server, 1 server is a majority.
2 servers, 2 servers are a majority.
3 servers, 2 servers are a majority.
4 servers, 3 servers are a majority.
...

Setup

To initialize a three-node replica set including one arbiter, start three mongod
instances, each using the --replSet flag followed by a name for the replica set.
For example:

mongod --replSet cluster-foo

Next, connect to one of the mongod instances and run the following:

rs.initiate()
rs.add(“host2:27017”)
rs.add(“host3:27017”, true)

rs.add() can also accept a document parameter, such as rs.add({“_id”: 4,
“host”: “host4:27017”}). The document can contain the following options:

priority: n

Members will be elected primary in order
of priority, if possible. Higher values make a
member more eligible to become a primary.
n=0 means this member will never be a
primary.

votes: n Assigns a member voting privileges (n=1
for voting, n=0 for nonvoting).

slaveDelay: n This member will always be a secondary
and will lag n seconds behind the master.

arbiterOnly: true This member will be an arbiter.

hidden: true
Do not show this member in isMaster
output. Use this option to hide this member
from clients.

tags: [...]
Member location description.
See docs.mongodb.org/manual/data-
center-awareness.

Setup (continued)

Administration

rs.initiate() Creates a new replica set with one member.

rs.add(“host:port”) Adds a member.

rs.addArb(“host:port”) Adds an arbiter.

rs.remove(“host:port”) Removes a member.

rs.status() Returns a document with information about the state of
the replica set.

rs.conf() Returns the replica set configuration document.

rs.reconfig(newConfig) Re-configures a replica set by applying a new replica
set configuration object.

rs.isMaster() Indicates which member is primary.

rs.stepDown(n) Forces the primary to become a secondary for n
seconds, during which time an election can take place.

Replication

Administration (continued)

rs.freeze(n) Prevents the current member from seeking election as
primary for n seconds. n=0 means unfreeze.

rs.printSlaveReplicatio
nInfo()

Prints a report of the status of the replica set from the
perspective of the secondaries.

For More Information

http://docs.mongodb.org/master/core/replication-introduction/

Replication

Sharding

sh.enableSharding(‘products’) Enables sharding on products database.

sh.shardCollection(‘products.
catalog’, { sku:1, brand:1})

Shards collection catalog of products
database with shard key consisting of the
sku and brand fields.

sh.status()
Prints a formatted report of the sharding
configuration and the information regarding
existing chunks in a sharded cluster.

sh.addShard(‘REPLICA1/
host:27017’)

Adds existing replica set REPLICA1 as a
shard to the cluster.

Sharding

For More Information

http://docs.mongodb.org/master/core/sharding-introduction/

Mapping SQL to
MongoDB

Mapping SQL to MongoDB

Converting to MongoDB Terms

mysqld oracle mongod

mysql sqlplus mongo

database (schema) database

table collection

index index

row document

column field

joining linking & embedding

partition shard

MYSQL Executable Oracle Executable MongoDB Executable

SQL Term MongoDB Term

Queries and other operations in MongoDB are represented as documents passed
to find()and other methods. Below are examples of SQL statements and the
analogous statements in MongoDB JavaScript shell syntax.

CREATE TABLE users (name
VARCHAR(128), age NUMBER)

db.createCollection(“users”)

INSERT INTO users VALUES
(‘Bob’, 32)

db.users.insert({name: “Bob”,
age: 32})

SELECT * FROM users db.users.find()

SELECT name, age FROM users
db.users.find({}, {name: 1,
age: 1, _id:0})

SELECT name, age FROM users
WHERE age = 33

db.users.find({age: 33}, {name:
1, age: 1, _id:0})

SELECT * FROM users WHERE age
> 33

db.users.find({age: {$gt: 33}})

SELECT * FROM users WHERE age
<= 33

db.users.find({age: {$lte:
33}})

SELECT * FROM users WHERE age >
33 AND age < 40

db.users.find({age: {$gt: 33,
$lt: 40}})

SELECT * FROM users WHERE age =
32 AND name = ‘Bob’

db.users.find({age: 32, name:
“Bob”})

SELECT * FROM users WHERE age =
33 OR name = ‘Bob’

db.users.find({$or:[{age:33},
{name:“Bob”}]})

SELECT * FROM users WHERE age =
33 ORDER BY name ASC

db.users.find({age: 33}).
sort({name: 1})

SELECT * FROM users ORDER BY
name DESC

db.users.find().sort({name:
-1})

SELECT * FROM users WHERE name
LIKE ‘%Joe%’

db.users.find({name: /Joe/})

SQL MongoDB

Mapping SQL to MongoDB

SELECT * FROM users WHERE name
LIKE ‘Joe%’

db.users.find({name: /^Joe/})

SELECT * FROM users LIMIT 10
SKIP 20

db.users.find().skip(20).lim-
it(10)

SELECT * FROM users LIMIT 1 db.users.findOne()

SELECT DISTINCT name FROM users db.users.distinct(“name”)

SELECT COUNT(*) FROM users db.users.count()

SELECT COUNT(*) FROM users
WHERE AGE > 30

db.users.find({age: {$gt:
30}}).count()

SELECT COUNT(AGE) FROM users
db.users.find({age: {$exists:
true}}).count()

UPDATE users SET age = 33 WHERE
name = ‘Bob’

db.users.update({name: “Bob”},
{$set: {age: 33}}, {multi:
true})

UPDATE users SET age = age + 2
WHERE name = ‘Bob’

db.users.update({name: “Bob”},
{$inc: {age: 2}}, {multi:
true})

DELETE FROM users WHERE name =
‘Bob’

db.users.remove({name: “Bob”})

CREATE INDEX ON users (name
ASC)

db.users.createIndex({name: 1})

CREATE INDEX ON users (name
ASC, age DESC)

db.users.createIndex({name: 1,
age: -1})

EXPLAIN SELECT * FROM users
WHERE age = 32

db.users.find({age: 32}).ex-
plain()

(db.users.explain().find({age:
32}) for 3.0)

SELECT age, SUM(1) AS counter
FROM users GROUP BY age

db.users.aggregate([{$group:
{‘_id’: ‘$age’, counter:
{$sum:1}} }])

SQL MongoDB

Mapping SQL to MongoDB

SELECT age, SUM(1) AS counter
FROM users WHERE country = “US”
GROUP BY age

db.users.aggregate([
 {$match: {country: ‘US’} },
 {$group: {‘_id’: ‘$age’,
counter: {$sum:1}} }
])

SELECT age AS “how_old” FROM
users

db.users.aggregate([
 {$project: {“how_old”:
“$age”}}
])

SQL MongoDB

For More Information

http://docs.mongodb.org/manual/reference/sql-comparison/

Mapping SQL to MongoDB

Learn

Downloads - mongodb.org/downloads

MongoDB Enterprise Advanced - mongodb.com/enterprise

MongoDB Manual - docs.mongodb.org

Free Online Education - university.mongodb.com

Presentations - mongodb.com/presentations

In-person Training - university.mongodb.com/training

Support

Stack Overflow - stackoverflow.com/questions/tagged/mongodb

Google Group - groups.google.com/group/mongodb-user

Bug Tracking - jira.mongodb.org

Commercial Support - mongodb.com/support

Community

MongoDB User Groups (MUGs) - mongodb.com/user-groups

MongoDB Events - mongodb.com/events

Social

Twitter - @MongoDB, @MongoDB_Inc

Facebook - facebook.com/mongodb

LinkedIn - linkedin.com/groups/MongoDB-2340731

Contact

Contact MongoDB - mongodb.com/contact

©2015 MongoDB Inc.
For more information or to download MongoDB, visit mongodb.org

Resources

